Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Mil Med ; 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-2319414

ABSTRACT

OBJECTIVES: We explored factors related to testing positive for severe acute respiratory coronavirus 2 (SARS-CoV-2) to identify populations most at risk for this airborne pathogen. METHODS: Data were abstracted from the medical record database of the U.S. Department of Veterans Affairs and from public sources. Veterans testing positive were matched in a 1:4 ratio to those at a similar timepoint and local disease burden who remained negative between March 1, 2020, and December 31, 2020. Multivariable logistic regression was used to calculate odds ratios for the association of each potential risk factor with a positive test result. RESULTS: A total of 24,843 veterans who tested positive for SARS-CoV-2 were matched with 99,324 controls. Cases and controls were similar in age, sex, ethnicity, and rurality, but cases were more likely to be Black, reside in low-income counties, and suffer from dementia. Multivariable analysis demonstrated highest risk for Black veterans, those with dementia or diabetes, and those living in nursing homes or high-poverty areas. Veterans living in counties likely to be more adherent to public health guidelines were at the lowest risk. CONCLUSIONS: Our results are similar to those from studies of other populations and add to that work by accounting for several important proxies for risk. In particular, this work has implications for the value of infection control measures at the population level in helping to stem widespread outbreaks of this type.

2.
Mil Med ; 2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-2247928

ABSTRACT

INTRODUCTION: Early identification of patients with coronavirus disease 2019 (COVID-19) who are at risk for hospitalization may help to mitigate disease burden by allowing healthcare systems to conduct sufficient resource and logistical planning in the event of case surges. We sought to develop and validate a clinical risk score that uses readily accessible information at testing to predict individualized 30-day hospitalization risk following COVID-19 diagnosis. METHODS: We assembled a retrospective cohort of U.S. Veterans Health Administration patients (age ≥ 18 years) diagnosed with COVID-19 between March 1, 2020, and December 31, 2020. We screened patient characteristics using Least Absolute Shrinkage and Selection Operator logistic regression and constructed the risk score using characteristics identified as most predictive for hospitalization. Patients diagnosed before November 1, 2020, comprised the development cohort, while those diagnosed on or after November 1, 2020, comprised the validation cohort. We assessed risk score discrimination by calculating the area under the receiver operating characteristic (AUROC) curve and calibration using the Hosmer-Lemeshow (HL) goodness-of-fit test. This study was approved by the Veteran's Institutional Review Board of Northern New England at the White River Junction Veterans Affairs Medical Center (Reference no.:1473972-1). RESULTS: The development and validation cohorts comprised 11,473 and 12,970 patients, of whom 4,465 (38.9%) and 3,669 (28.3%) were hospitalized, respectively. The independent predictors for hospitalization included in the risk score were increasing age, male sex, non-white race, Hispanic ethnicity, homelessness, nursing home/long-term care residence, unemployed or retired status, fever, fatigue, diarrhea, nausea, cough, diabetes, chronic kidney disease, hypertension, and chronic obstructive pulmonary disease. Model discrimination and calibration was good for the development (AUROC = 0.80; HL P-value = .05) and validation (AUROC = 0.80; HL P-value = .31) cohorts. CONCLUSIONS: The prediction tool developed in this study demonstrated that it could identify patients with COVID-19 who are at risk for hospitalization. This could potentially inform clinicians and policymakers of patients who may benefit most from early treatment interventions and help healthcare systems anticipate capacity surges.

3.
Sci Data ; 10(1): 173, 2023 03 28.
Article in English | MEDLINE | ID: covidwho-2278591

ABSTRACT

This dataset contains ligand conformations and docking scores for 1.4 billion molecules docked against 6 structural targets from SARS-CoV2, representing 5 unique proteins: MPro, NSP15, PLPro, RDRP, and the Spike protein. Docking was carried out using the AutoDock-GPU platform on the Summit supercomputer and Google Cloud. The docking procedure employed the Solis Wets search method to generate 20 independent ligand binding poses per compound. Each compound geometry was scored using the AutoDock free energy estimate, and rescored using RFScore v3 and DUD-E machine-learned rescoring models. Input protein structures are included, suitable for use by AutoDock-GPU and other docking programs. As the result of an exceptionally large docking campaign, this dataset represents a valuable resource for discovering trends across small molecule and protein binding sites, training AI models, and comparing to inhibitor compounds targeting SARS-CoV-2. The work also gives an example of how to organize and process data from ultra-large docking screens.


Subject(s)
COVID-19 , Ligands , SARS-CoV-2 , Humans , Molecular Docking Simulation
4.
Viruses ; 15(3)2023 02 23.
Article in English | MEDLINE | ID: covidwho-2283703

ABSTRACT

The emergence and availability of closely related clinical isolates of SARS-CoV-2 offers a unique opportunity to identify novel nonsynonymous mutations that may impact phenotype. Global sequencing efforts show that SARS-CoV-2 variants have emerged and then been replaced since the beginning of the pandemic, yet we have limited information regarding the breadth of variant-specific host responses. Using primary cell cultures and the K18-hACE2 mouse, we investigated the replication, innate immune response, and pathology of closely related, clinical variants circulating during the first wave of the pandemic. Mathematical modeling of the lung viral replication of four clinical isolates showed a dichotomy between two B.1. isolates with significantly faster and slower infected cell clearance rates, respectively. While isolates induced several common immune host responses to infection, one B.1 isolate was unique in the promotion of eosinophil-associated proteins IL-5 and CCL11. Moreover, its mortality rate was significantly slower. Lung microscopic histopathology suggested further phenotypic divergence among the five isolates showing three distinct sets of phenotypes: (i) consolidation, alveolar hemorrhage, and inflammation, (ii) interstitial inflammation/septal thickening and peribronchiolar/perivascular lymphoid cells, and (iii) consolidation, alveolar involvement, and endothelial hypertrophy/margination. Together these findings show divergence in the phenotypic outcomes of these clinical isolates and reveal the potential importance of nonsynonymous mutations in nsp2 and ORF8.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , SARS-CoV-2/genetics , Genotype , Phenotype , Inflammation , Mice, Transgenic , Disease Models, Animal , Lung
5.
BMJ Open ; 12(8): e063935, 2022 08 03.
Article in English | MEDLINE | ID: covidwho-1973851

ABSTRACT

OBJECTIVE: To estimate the effectiveness of messenger RNA (mRNA) booster doses during the period of Delta and Omicron variant dominance. DESIGN: We conducted a matched test-negative case-control study to estimate the vaccine effectiveness (VE) of three and two doses of mRNA vaccines against infection (regardless of symptoms) and against COVID-19-related hospitalisation and death. SETTING: Veterans Health Administration. PARTICIPANTS: We used electronic health record data from 114 640 veterans who had a SARS-CoV-2 test during November 2021-January 2022. Patients were largely 65 years or older (52%), male (88%) and non-Hispanic white (59%). MAIN OUTCOME MEASURES: First positive result for a SARS-CoV-2 PCR or antigen test. RESULTS: Against infection, booster doses had higher estimated VE (64%, 95% CI 63 to 65) than two-dose vaccination (12%, 95% CI 10 to 15) during the Omicron period. For the Delta period, the VE against infection was 90% (95% CI 88 to 92) among boosted vaccinees, higher than the VE among two-dose vaccinees (54%, 95% CI 50 to 57). Against hospitalisation, booster dose VE was 89% (95% CI 88 to 91) during Omicron and 94% (95% CI 90 to 96) during Delta; two-dose VE was 63% (95% CI 58 to 67) during Omicron and 75% (95% CI 69 to 80) during Delta. Against death, the VE with a booster dose was 94% (95% CI 90 to 96) during Omicron and 96% (95% CI 87 to 99) during Delta. CONCLUSIONS: Among an older, mostly male, population with comorbidities, we found that an mRNA vaccine booster was highly effective against infection, hospitalisation and death. Although the effectiveness of booster vaccination against infection was moderately higher against Delta than against the Omicron SARS-CoV-2 variant, effectiveness against severe disease and death was similarly high against both variants.


Subject(s)
COVID-19 , Veterans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Female , Humans , Male , RNA, Messenger , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
6.
Drugs Real World Outcomes ; 9(3): 359-375, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1926116

ABSTRACT

BACKGROUND: The COVID-19 pandemic generated a massive amount of clinical data, which potentially hold yet undiscovered answers related to COVID-19 morbidity, mortality, long-term effects, and therapeutic solutions. OBJECTIVES: The objectives of this study were (1) to identify novel predictors of COVID-19 any cause mortality by employing artificial intelligence analytics on real-world data through a hypothesis-agnostic approach and (2) to determine if these effects are maintained after adjusting for potential confounders and to what degree they are moderated by other variables. METHODS: A Bayesian statistics-based artificial intelligence data analytics tool (bAIcis®) within the Interrogative Biology® platform was used for Bayesian network learning and hypothesis generation to analyze 16,277 PCR+ patients from a database of 279,281 inpatients and outpatients tested for SARS-CoV-2 infection by antigen, antibody, or PCR methods during the first pandemic year in Central Florida. This approach generated Bayesian networks that enabled unbiased identification of significant predictors of any cause mortality for specific COVID-19 patient populations. These findings were further analyzed by logistic regression, regression by least absolute shrinkage and selection operator, and bootstrapping. RESULTS: We found that in the COVID-19 PCR+ patient cohort, early use of the antiemetic agent ondansetron was associated with decreased any cause mortality 30 days post-PCR+ testing in mechanically ventilated patients. CONCLUSIONS: The results demonstrate how a real-world COVID-19-focused data analysis using artificial intelligence can generate unexpected yet valid insights that could possibly support clinical decision making and minimize the future loss of lives and resources.

7.
Vaccine ; 40(33): 4742-4747, 2022 08 05.
Article in English | MEDLINE | ID: covidwho-1895482

ABSTRACT

OBJECTIVE: To estimate relative effectiveness of the booster mRNA Covid-19 vaccination versus the 2-dose primary series for both Delta and Omicron variants with self-controlled study design. METHODS: We used the Veterans Health Administration (VHA) Corporate Data Warehouse to identify U.S. Veterans who received the 2-dose primary mRNA Covid-19 vaccine series and a mRNA Covid-19 booster, and who had a positive SARS-CoV-2 test during the Delta (9/23/2021-11/30/2021) or Omicron (1/1/22-3/19/22) predominant period. Among them, we conducted a self-controlled risk interval (SCRI) analysis to compare odds of SARS-CoV-2 infection during a booster exposure interval versus a control interval. Exposures were a control interval (days 4-6 post-booster vaccination, presumably prior to gain of booster immunity), and booster exposure interval (days 14-16 post-booster vaccination, presumably following gain of booster immunity). Cases had a positive PCR or antigen SARS-CoV-2 test. Separately for Delta and Omicron periods, we used conditional logistic regression to calculate odds ratios (OR) of a positive test for the booster versus control interval and calculated relative effectiveness of booster versus 2-dose primary series as (1-OR)*100. The SCRI approach implicitly controlled for time-fixed confounders. RESULTS: We found 42 individuals with a positive SARS-CoV-2 test in the control interval and 14 in the booster exposure interval during the Delta period, and 141 and 70, respectively, in the Omicron period. For the booster versus 2-dose primary series, the odds of infection were 70% (95 %CI: 42%, 84%) lower during the Delta period and 54% (95 %CI: 38%, 66%) lower during Omicron. In sensitivity analyses among those with prior Covid-19 history, and age stratification, ORs were similar to the main analysis. CONCLUSIONS: Booster vaccination was more effective relative to a 2-dose primary series during the Delta and Omicron predominant periods, and the relative effectiveness was consistent across age groups.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Humans , Immunization, Secondary , RNA, Messenger , SARS-CoV-2 , Vaccination , Veterans Health
8.
ACS Pharmacol Transl Sci ; 5(4): 255-265, 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1795846

ABSTRACT

Inhibition of the SARS-CoV-2 main protease (Mpro) is a major focus of drug discovery efforts against COVID-19. Here we report a hit expansion of non-covalent inhibitors of Mpro. Starting from a recently discovered scaffold (The COVID Moonshot Consortium. Open Science Discovery of Oral Non-Covalent SARS-CoV-2 Main Protease Inhibitor Therapeutics. bioRxiv 2020.10.29.339317) represented by an isoquinoline series, we searched a database of over a billion compounds using a cheminformatics molecular fingerprinting approach. We identified and tested 48 compounds in enzyme inhibition assays, of which 21 exhibited inhibitory activity above 50% at 20 µM. Among these, four compounds with IC50 values around 1 µM were found. Interestingly, despite the large search space, the isoquinolone motif was conserved in each of these four strongest binders. Room-temperature X-ray structures of co-crystallized protein-inhibitor complexes were determined up to 1.9 Å resolution for two of these compounds as well as one of the stronger inhibitors in the original isoquinoline series, revealing essential interactions with the binding site and water molecules. Molecular dynamics simulations and quantum chemical calculations further elucidate the binding interactions as well as electrostatic effects on ligand binding. The results help explain the strength of this new non-covalent scaffold for Mpro inhibition and inform lead optimization efforts for this series, while demonstrating the effectiveness of a high-throughput computational approach to expanding a pharmacophore library.

9.
Chemical science ; 12(4):1513-1527, 2020.
Article in English | EuropePMC | ID: covidwho-1766761

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mpro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41–Cys145, Mpro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mpro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mpro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored Nδ (HD) and Nϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mpro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts. The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics.

10.
J Nurses Prof Dev ; 38(1): 49-61, 2022.
Article in English | MEDLINE | ID: covidwho-1608057

ABSTRACT

The COVID-19 pandemic has produced an abundance of new and evolving evidence related to providing care for this complex patient population. Keeping up with the rapid flow of published information can be challenging and time-consuming, even for those skilled at interpreting the literature. To help clinical nurses readily apply standardized, evidence-based recommendations in a rapidly changing healthcare environment, the Good Samaritan Medical Center Education Team created a nursing-specific guideline for care of patients with COVID-19.


Subject(s)
COVID-19 , Nursing Care , Delivery of Health Care , Humans , Pandemics , SARS-CoV-2
12.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750347

ABSTRACT

Protein-ligand docking is an in silico tool used to screen potential drug compounds for their ability to bind to a given protein receptor within a drug-discovery campaign. Experimental drug screening is expensive and time consuming, and it is desirable to carry out large scale docking calculations in a high-throughput manner to narrow the experimental search space. Few of the existing computational docking tools were designed with high performance computing in mind. Therefore, optimizations to maximize use of high-performance computational resources available at leadership-class computing facilities enables these facilities to be leveraged for drug discovery. Here we present the porting, optimization, and validation of the AutoDock-GPU program for the Summit supercomputer, and its application to initial compound screening efforts to target proteins of the SARS-CoV-2 virus responsible for the current COVID-19 pandemic.

13.
JAMA Netw Open ; 4(10): e2128391, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1453501

ABSTRACT

Importance: Effectiveness of mRNA vaccinations in a diverse older population with high comorbidity is unknown. Objectives: To describe the scope of the COVID-19 vaccination rollout among US veterans, and to estimate mRNA COVID-19 vaccine effectiveness (VE) as measured by rates of SARS-CoV-2 infection. Design, Setting, and Participants: This matched test-negative case-control study was conducted using SARS-CoV-2 test results at Veterans Health Administration sites from December 14, 2020, to March 14, 2021. Vaccine coverage was estimated for all veterans. VE against SARS-CoV-2 infection and COVID-19-related hospitalization and death were estimated using electronic health records from veterans who routinely sought care at a VHA facility and had a test result positive for SARS-CoV-2 (cases) or negative for SARS-CoV-2 (controls). Cases and controls were matched on time of test and geographic region. Data were analyzed from May to July 2021. Exposures: Vaccination status, defined as unvaccinated, partially vaccinated (≥14 days after first dose until second dose), or fully vaccinated (≥14 days after second dose), at time of test. Main Outcomes and Measures: The main outcome of interest was a positive result for SARS-CoV-2 on a polymerase chain reaction or antigen test. Secondary outcomes included COVID-19-related hospitalization and death, defined by discharge data and proximity of event to positive test result. VE was estimated from odds ratios for SARS-CoV-2 infection with 95% CIs. Results: Among 6 647 733 veterans included (3 350 373 veterans [50%] aged ≥65 years; 6 014 798 [90%] men and 632 935 [10%] women; 461 645 Hispanic veterans of any race [7%], 1 102 471 non-Hispanic Black veterans [17%], and 4 361 621 non-Hispanic White veterans [66%]), 1 363 180 (21%) received at least 1 COVID-19 vaccination by March 7, 2021. In this period, during which the share of SARS-CoV-2 variants Alpha, Epsilon, and Iota had started to increase in the US, estimates of COVID-19 VE against infection, regardless of symptoms, was 95% (95% CI, 93%-96%) for full vaccination and 64% (95% CI, 59%-68%) for partial vaccination. Estimated VE against COVID-19-related hospitalization for full vaccination was 91% (95% CI 83%-95%); there were no deaths among veterans who were fully vaccinated. VE against infection was similar across subpopulations (non-Hispanic Black, 94% [95% CI, 88%-97%]; Hispanic [any race], 83% [95% CI, 45%-95%]; non-Hispanic White, 92% [95% CI 88%-94%]; rural, 94% [95% CI, 89%-96%]; urban, 93% 95% CI, 89%-95%]). Conclusions and Relevance: For veterans of all racial and ethnic subgroups living in urban or rural areas, mRNA vaccination was associated with substantially decreased risk of COVID-19 infection and hospitalization, with no deaths among fully vaccinated veterans.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , RNA, Messenger , Vaccination Coverage , Veterans , Black or African American , Aged , Aged, 80 and over , Case-Control Studies , Female , Hispanic or Latino , Hospitalization , Humans , Male , Odds Ratio , Pandemics , SARS-CoV-2 , Treatment Outcome , United States , United States Department of Veterans Affairs , White People
14.
J Phys Chem Lett ; 12(17): 4195-4202, 2021 May 06.
Article in English | MEDLINE | ID: covidwho-1387119

ABSTRACT

The catalytic reaction in SARS-CoV-2 main protease is activated by a proton transfer (PT) from Cys145 to His41. The same PT is likely also required for the covalent binding of some inhibitors. Here we use a multiscale computational approach to investigate the PT thermodynamics in the apo enzyme and in complex with two potent inhibitors, N3 and the α-ketoamide 13b. We show that with the inhibitors the free energy cost to reach the charge-separated state of the active-site dyad is lower, with N3 inducing the most significant reduction. We also show that a few key sites (including specific water molecules) significantly enhance or reduce the thermodynamic feasibility of the PT reaction, with selective desolvation of the active site playing a crucial role. The approach presented is a cost-effective procedure to identify the enzyme regions that control the activation of the catalytic reaction and is thus also useful to guide the design of inhibitors.


Subject(s)
Drug Design , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Biocatalysis , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Humans , Molecular Dynamics Simulation , Protease Inhibitors/metabolism , Protons , Quantum Theory , SARS-CoV-2/isolation & purification , Thermodynamics , Viral Matrix Proteins/metabolism
15.
Comput Sci Eng ; 23(1): 7-16, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1165634

ABSTRACT

The urgent search for drugs to combat SARS-CoV-2 has included the use of supercomputers. The use of general-purpose graphical processing units (GPUs), massive parallelism, and new software for high-performance computing (HPC) has allowed researchers to search the vast chemical space of potential drugs faster than ever before. We developed a new drug discovery pipeline using the Summit supercomputer at Oak Ridge National Laboratory to help pioneer this effort, with new platforms that incorporate GPU-accelerated simulation and allow for the virtual screening of billions of potential drug compounds in days compared to weeks or months for their ability to inhibit SARS-COV-2 proteins. This effort will accelerate the process of developing drugs to combat the current COVID-19 pandemic and other diseases.

16.
Chem Sci ; 12(4): 1513-1527, 2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1083334

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mpro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41-Cys145, Mpro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mpro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mpro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored N δ (HD) and N ϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mpro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.

17.
Proteins ; 89(2): 163-173, 2021 02.
Article in English | MEDLINE | ID: covidwho-745464

ABSTRACT

Human interleukin-6 (hIL-6) is a multifunctional cytokine that regulates immune and inflammatory responses in addition to metabolic and regenerative processes and cancer. hIL-6 binding to the IL-6 receptor (IL-6Rα) induces homodimerization and recruitment of the glycoprotein (gp130) to form a hexameric signaling complex. Anti-IL-6 and IL-6R antibodies are clinically approved inhibitors of IL-6 signaling pathway for treating rheumatoid arthritis and Castleman's disease, respectively. There is a potential to develop novel small molecule IL-6 antagonists derived from understanding the structural basis for IL-6/IL-6Rα interactions. Here, we combine homology modeling with extensive molecular dynamics (MD) simulations to examine the association of hIL-6 with IL-6Rα. A comparison with MD of apo hIL-6 reveals that the binding of hIL-6 to IL-6Rα induces structural and dynamic rearrangements in the AB loop region of hIL-6, disrupting intraprotein contacts and increasing the flexibility of residues 48 to 58 of the AB loop. In contrast, due to the involvement of residues 59 to 78 in forming contacts with the receptor, these residues of the AB loop are observed to rigidify in the presence of the receptor. The binary complex is primarily stabilized by two pairs of salt bridges, Arg181 (hIL-6)- Glu182 (IL-6Rα) and Arg184 (hIL-6)- Glu183 (IL-6Rα) as well as hydrophobic and aromatic stacking interactions mediated essentially by Phe residues in both proteins. An interplay of electrostatic, hydrophobic, hydrogen bonding, and aromatic stacking interactions facilitates the formation of the hIL-6/IL-6Rα complex.


Subject(s)
Apoproteins/chemistry , Interleukin-6/chemistry , Molecular Dynamics Simulation , Receptors, Interleukin-6/chemistry , Apoproteins/metabolism , Binding Sites , Crystallography, X-Ray , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Interleukin-6/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptors, Interleukin-6/metabolism , Static Electricity , Structural Homology, Protein , Thermodynamics
18.
2020.
Non-conventional in English | WHO COVID | ID: covidwho-664398

ABSTRACT

Protein-ligand docking is an in silico tool used to screen potential drug compounds for their ability to bind to a given protein receptor within a drug-discovery campaign. Experimental drug screening is expensive and time consuming, and it is desirable to carry out large scale docking calculations in a high-throughput manner to narrow the experimental search space. Few of the existing computational docking tools were designed with high performance computing in mind. Therefore, optimizations to maximize use of high-performance computational resources available at leadership-class computing facilities enables these facilities to be leveraged for drug discovery. Here we present the porting, optimization, and validation of the AutoDock-GPU program for the Summit supercomputer, and its application to initial compound screening efforts to target proteins of the SARS-CoV-2 virus responsible for the current COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL